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On the torque of wavy vortices 

By P. M. EAGLES 
Department of Mathematics, The City University, London 

(Received 30 March 1973) 

Numerical calculations are made of the torque required to sustain a wavy- 
vortex flow between rotating cylinders. The results are found to agree well with 
experimental work of Donnelly (1958), and give further confirmation of the 
validity of Davey, DiPrima & Stuart’s (1968) analysis. 

~ 

1. Introduction 
Davey (1962), following Stuart (1958), calculated the torque required to sustain 

a Taylor-vortex motion in flow between rotating cylinders. This work was con- 
firmed by the more rigorous analysis of KirchgBssner & Sorger (1969). 

Let 9 be the ratio of the radii of the cylinders. Davey’s calculations showed 
good agreement with the experimental results of Donnelly (1958) for the case 
when the outer cylinder is fixed and 7 = +, but not such good agreement for 
7 = 0.95. Davey suggested that in the latter case the lack of agreement occurs 
because the Taylor vortices become modified and develop into a wavy-vortex 
form of flow a t  quite moderate speeds of rotation when 7 is close to unity. The 
present calculations were undertaken to see whether or not Davey, DiPrima & 
Stuart’s (1968) theory of wavy-vortex flow gives torque values in agreement 
with the experiments. 

We give a very brief summary of the situation below. The reader is referred to 
Davey et al. for a much more extensive review. 

Consider two concentric circular cylinders, the outer one fixed and the annulus 
filled with liquid. We define a Taylor number T proportional to the square of the 
angular velocity of the inner cylinder. If T is gradually increased experiments 
indicate that for a given value of 9 the flow changes a t  T = T, from the purely 
circumferential laminar Couette flow to Taylor-vortex flow, which consists of 
the Couette flow with superimposed toroidal regularly spaced vortices. At a still 
higher value of T ,  above another critical Taylor number TI, the vortices become 
modified by a waviness in the azimuthal direction. Both the number of complete 
waves and the value of TI depend upon the value of 91. When 7 is close to unity TI is 
close to T, numerically (but TI $, T, as 7 -+ I ) .  By TI we mean the value of T at 
which waviness is first seen experimentally. 

Davey et al. introduced a method of analysis which allows us to examine the 
linear stability of the Taylor-vortex flow and to calculate the consequent de- 
velopment of wavy-vortex flow. In  this method one assumes a definite mode of 
non-axisymmetric disturbance to the Taylor-vortex flow. This mode has m com- 
plete waves in the azimuthal direction. One can then calculate the critical Taylor 
number T’(m) at which the Taylor vortices become linearly unstable. Davey et al. 
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FIGURE 1. The neutral curve for axisymmotric disturbances (2.1) with 7 = 0.951. We 
show the Taylor-vortex regime (AB) and the wavy-vortex regime (above C) for h = A,, 
m = 4. The value of b,,(4) is negative on AB and positive above B. 

calculated T’( l), T’(2) and T’(4) using the small-gap approximation. Eagles 
(1971) extended the work. The result is that them = 1 mode is the most unstable, 
but T’(l) ,  T’(2) and T’(4) are all fairly close together, a t  about l-lT, for 7 = 0.95. 
The tentative conclusion was that Tl = T’(1) N l .lTc, in qualitative agreement 
with experiments of Schwarz, Springett & Donnelly (1964). However, the 
calculations outlined below seem t o  indicate that Tl = T’(4). 

The present work was undertaken to calculate the torque due to  the wavy- 
vortex model for m = 1, 2,  3 and 4, with 7 = 0-951,t the main object being to 
compare the results with Donnelly’s (1958) experiments. These experiments show 
that if the total torque needed to sustain the motion is plotted versus the Taylor 
number the rate of increase of the torque with T shows a definite increase a t  
T = T,, but a definite decrease a t  a slightly higher value of T ,  which we tenta- 
tively identify with TI. It is surmized that the flow for T > Tl is of the wavy- 
vortex type predicted by the method of Davey et al. The curve for T > TI is 
certainly well below the calculated torque for Taylor vortices (see figure 2). 

It is found that for m = 4 the results agree well with the experiments of 
Donnelly (1958) and of Debler, Funer & Schaaf (1968). Although the mode with 
m = 1 is the most unstable theoretically, it appears likely that the mode with 
m = 4 is the one which actually grows to develop into wavy-vortex flow. This 
may possibly be explained by the higher linear growth rate of the m = 4 mode 
which is predicted by the theory at quite small values of (T - Tl)/Tc. 

We should also explain at this point that our calculation, like those of Davey 
and of Davey et ul., is restricted to the approximation in which the cubic-terms 
in the amplitude functions are the highest considered. 

t Corresponds to 8 = 2(R, - R,)/(R, +R,) = 0.05. 
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2. The method of expansion 
Consider two infinitely long, concentric, right circular cylinders, of radii R, 

and R2 respectively. We suppose that ( r ,  8, z )  and t are dimensionless cylindrical 
polar co-ordinates and a dimensionless time. In later formulae and calculations 
we have used the reference length R2 - R, = d and the reference time d2 /v ,  where 
v is the kinematic viscosity of the liquid which fills the annulus. The z axis is 
fixed and coincides with the common axis of the cylinders. The inner cylinder 
rotates with angular velocity fil and the outer cylinder is a t  rest. 

There is a steady-state Couette-flow solution of the Navier-Stokes and con- 
tinuity equations in which the azimuthal (only non-zero) velocity component 
takes the form Ar + B/r, where A and B are constants. 

Let u, v and w be dimensionless velocity components of a perturbation to the 
steady Cauette flow. The exact equations for these disturbance velocities are 
coupled nonlinear partial differential equations with homogeneous boundary con- 
ditions. As a first approximation we may linearize. There exist axisymmetric 
eigenfunctions in which the first velocity component is 

u = ul(r)E$ hz eaot. (2.1) 
Calculations show that the eigenvalues are real, and here a, is the greatest of 

these. The wavenumber h may be specified and then a, can be calculated in 
terms of h and the other dimensionless parameters which specify the problem. 
These are the ratio 

and the Taylor number 

There also exist non-axisymmetric linear eigenfunctions in which 

Here u,(r) and b, are complex, and b, is chosen as the eigenvalue of greatest real 
part. Then b, is a function of A, m, 7 and T.  We shall write b,(m) when we wish to 
emphasize its dependence upon the integer m. 

For a given 7 we may calculate the neutral curve in the A ,  T plane, on which 
a, = 0. The point A(& T,) is the minimum (see figure 1) .  At (A,, T,) it has been 
calculated that the real part of b,(m) is negative, at  least for m = 1 , 2 , 3  and 4. 
But if we increase T only slightly we find that the real part of b, becomes positive 
for T > TI.(m), so that non-axisymmetric modes may be expected to become 
important. 

Davey et al. developed an expansion of the nonlinear problem based on the 
linear eigenfunctions (2.3) and (2.4). The case which yields the wavy vortices is 
based on (2.3) with cos hz and (2.4) with sinhz. The expansion uses a real ampli- 
tude function A(t)  and a complex one B(t). The disturbance velocities are ex- 
panded as follows : 

u = u2(r)gg hz ebat eime. (2.4) 

(2.5) 

u(r ,B,z , t )  = A(t )u , ( r )coshz+B(t )u , ( r )s inhze ime+~( t )~ , ( r )  sinhzecims 
+ c Ai(t) H ( t )  P ( t )  uijli(r, 8,  z) ,  

i + j + k > l  

v(r,  8, z,  t )  = A(t)  v l (r )  cos hz +B(t) v2(r) sin hz eime + . . . , 
w(r ,e , z , t )  = A(t)wl(r)sinhz+B(t)w,(r)coshzeimo-t- ... . 

1-2 
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Here a tilde denotes the complex conjugate. In  this expansion A is held fixed at 
A, and m is chosen to be an integer. 

The amplitude equations 

dA/dt = a 0 A + a I A 3 + ~ , A B B +  ..., (2.6) 

dB/dt = b, B + b,  B2B + b, A2B + . . . (2.7) 

are also needed to ensure consistency of the expansion. It is found that the forms 
of the functions uijk(r,O,x) and so on are forced by the nonlinear terms. For 
example, 

where f ( r )  and g ( r )  satisfy certain linear non-homogeneous ordinary differential 
equations with homogeneous boundary conditions. Further details of the ex- 
pansion may be found in Davey et al. The matrix form of Eagles (197 1) was used 
in the actual calculations, and the modifications needed for the present work 
are outlined in the appendix. 

The constants a,, a,, b, and b, are obtained by using solvability conditions on 
some of the ordinary differential equations for functions of r,  as explained in the 
appendix. 

In  the calculations we fix A ,  m and 7, so that the flow depends only on T. To 
second order in the amplitudes the flow is obtained by using values of a,, a4, b, 
and b, which do not vary with T, and by calculating the velocity functions of r 
like ul(r) ,  etc., at T = T,. In  this approximation the variation of the flow with 
T is expressed solely through the variation of a. and b, with T in (2.6) and (2.8). 
In  adapting this approximation we are following Davey (1962) and Davey et al. 
(1968), who explain the idea more fully. 

u300 = f ( r )  cos 3hz + g(r) cos Ax, (2.8) 

3. Calculation of the torque 

and (2.7) have the steady Taylor-vortex soh tion 
Ignoring terms of higher than cubic order in the amplitudes, we find that (2.6) 

B = 0, A = A ,  = ( - U ~ / U , ) $  (3.1) 

A = A,, B = Peeiwt,  ( 3 . 2 )  

for T > T, (a ,  > 0) provided a, < 0. The equations also admit the wavy-vortex 
solution 

where the constants A,,, P, and (L) are given by 

a,bo,-a b 
O 4r,  t ( 3 . 3 ) ,  ( 3 . 4 )  2 - aoblr-a4bor 2 - 

a4 b,, - a, blr’ Pe - a, b,, - a1 b,, A,  - 

o = boi+bIiP,2+b4iA:. ( 3 . 5 )  

The wavy-vortex solution exists only if 

a, - “0 b4r, aq 64, bl ,  aO b,r - bl, 

all have the same sign. CalcuIations with 7 = 0.951 show that a,bo,-aob,, 
changes sign from negative to positive at  T = T’(m). This is the value of T at 

t We use the notation b,, and b,, for the real and imaginary parts of b,, and so on. 
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which the Taylor-vortex flow becomes linearly unstable to perturbations of the 
non-axisymmetric type with m waves (see Davey et aE. for details). Numerical 
calculations show that 

T’(1) = 1924, T’(2)  = 1928, T’(3) = 1935 and T’(4)  = 1945. 

These values differ slightly from those in Eagles (1971) because here we are 
working to a lower order in the amplitudes. We note for comparison that 
T, = 1753. 

For T > T’(m) calculations show that the wavy-vortex model flow exists. 
The expansion of the azimuthal velocity v contains terms A;F,(r) and ,8fF3(r) 
and the torque required to sustain the wavy-vortex motion can easily be shown 
to be 

G = KRI -8/(l+7)2+A;P;(R1)f,8,2F~(R1)1, (3.6) 

K = nhpv2( 1 + 7) 7/2( 1 - 7)2 (3.7) 

R = QlRl(R2 - &)/v = [( 1 +7)/2( 1 - 7)]# T*, (3.8) 

where 

and 

while his the cylinder length, pis the fluid density and vis the kinematic viscosity. 
For formula (3.6) the reference length for r is R, - R, and the reference velocity 
for v is $(R, + R,) a,. 

Formula (3.6) holds only when T > T’(m). For T < !Z”(m) the flow is of the 
Taylor-vortex type, and the correct expression for the torque is obtained from 
(3.6) by setting BE = 0 and replacing A$ by A: = -ao/al. 

Equation (3.6) may be re-arranged as 

where 

(3.9) 

(3.10) 

g, = P W , )  ( - %/%), (3.11) 

9 2  = - (a4la1) ~;(Rl))P,2. (3.12) 

Then KRg, is the torque associated with the laminar Couette flow, KRg, is the 
extra torque which would be due to the superimposed Taylor-vortex flow if that 
flow existed, while KRg, is the extra torque due to the flow being of the wavy- 
vortex type. 

We have calculated the torque for the case when 

7 = 0.951, h = 3-127 = A, for m = 1 , 2 , 3  and 4 

in order to make a comparison with the experimental results of Donnelly (1958) 
and of Debler et al. (1968). In  plotting this figure we have followed Davey (1962), 
who, in effect, replaced a, in (3.11) by the formula 

a0 = T,(da0/dThc (1 - T,/T). (3.13) 

This has the same slope as T -+ T,, and has the advantage of fitting experimental 
results for the torque of Taylor vortices very well for a large range of T above T, 
in the case 7 = 0.5. We found that this procedure makes our results for the total 
torque with m = 4 fit the experimental results of Donnelly (1958) very well 
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FIGURE 2.  The total torque for 7 = 0.95. Curve L shows the laminar Couette torque. 
Curve A shows the total torque with Taylor vortices. Curves B, C and D show the total 
torque with wavy vortices for rn = 2, 3 and 4. Experimental points: x ,  Donnelly & 
Simon (1960); 0, Debler et al. (1968). R is defined in (3.8) and is proportional to T*. 

(figure 2). However, the detailed agreement is probably fortuitous. The important 
point is that the relative slopes of go, g, and g2 agree quite well with the experi- 
mental results in the neighbourhood of the transition points T, and T,. No more 
can be expected from our quite crude approximation. 

Calculations show that for a considerable range of T around T, the variation 
of a, and b,,(m) is nearly linear in T. See, for example, Davey et al. We therefore 
used a linear approximation in T to evaluate g,. Some values of a, and of b,, 
for m = 1 , 2  and 4 and for several values of T are listed in Eagles ( 197 1). For m = 3 
we calculated the following values. At T = 1933, b,, = 0.7765; at T = 1963, 
b,, = 0.9844. We constructed the linear approximations using these figures. 

The values of the constants a,, b17, a4, b4,, Bi(R,) and PA(R,) are given in 
table 1. These constants depend upon the scaling adopted for the linear eigen- 
funct’ions. In  our calculations we took 

v;(R,) = -ivp?,) = 2.0 

(equivalent to the second component of ul( - i) a,nd u2( - 4) being equal t o  1.0 
in the notation of Eagles (1971)). It should be noted that our eigenfunction scalings 
are different from those of Davey et al., so that the numbers in this table are not 
directly comparable with theirs. 

The method of numerical calculation was described in detail in Eagles (1971), 
where the constants a, and b, were calculated. We were able to make a further 
check on the operation of our computer program by making a comparison with 
Grannick’s (1968) calculation of b, for the cases p = - 0.8, m = 3 and 4.1 After 
allowing for the different scalings our results agreed to within less than 1 o/b, 
and considering the complexity of the algebra and the different formulations of 
the numerical problem we consider the agreement to be satisfactory. 

In figure 2 we plot the total torque versus the Reynolds number, defined in 
t Hsre /I is the rat,io Cl,/Cl,, where Cl, is the angular velocity of the outer cylinder. 
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m a1 b, a 4  b,, p;(R,) lw,) 
1 - 5.53 - 5.27 - 11.6 - 16.8 - 1.23 - 2.47 
2 - 5.53 - 4.50 - 13.2 - 17.2 - 1.23 - 2.49 
3 - 5.53 - 3-30 - 15.6 - 17.8 - 1.23 - 2.52 
4 - 5.53 - 1.74 - 18.5 - 17.9 - 1.23 - 2.56 

TABLE 1 

(3 .8 ) ,  in dimensionless form. The constants R, and G, are the values of R and G 
a t  the first critical point and in plotting the experimental results we estimated 
R, and G, by eye from the detailed experimental points (Donnelly & Simon 1960). 

We show the results for m = 2 , 3  and 4. The curve for m = 1 is too close to the 
Taylor-vortex curve to show. We wish to note that if we do not use Davey’s 
modification (3 .13)  the agreement with experiment is not so good. If we use the 
linear approximation in T for a, in calculating the Taylor-vortex torque g, we 
find that a t  RIR, = 1.2 the theoretical torque values are increased by about 10 yo 
over those shown in figure 2. 

4. Conclusions 
The results show that the experimental results for the torque agree quite well 

with the theory of Davey et al. (1968) of wavy-vortex flow with m = 4 (four 
azimuthal waves). It can be pointed out, however, that the nz = 4 mode of linear 
disturbance to Taylor-vortex flow is not the theoretically most unstable. As 
Tisgraduallyincreased them = 1 mode appearsfirst (theoretically) a t  T = T‘( 1). 
For a more complete treatment of the problem we would need to consider the 
interaction of the Taylor-vortex flow with the m = 1 , 2 , 3  and 4 and higher modes. 
Nevertheless, the critical values T’(l ) ,  T ’ ( 2 ) ,  T’(3) and T’(4) are close together 
(and indistinguishable on figure 2). Also the linear growth rate of the m = 4 mode 
is greatest for quite moderate values of T .  Extrapolating from table 3 of Eagles 
(19711, we estimate that in the linear approximation to B, (dB/dt)/B equals 0.01, 
0.07 and 0.11 form = 1 , 2  and 4 respectively a t  T = 2200. Thus the m = 4 mode 
might dominate the other modes under some circumstances and grow to produce 
the wavy-vortex flow with four complete waves. On the other hand it is possible 
that some combination of the m = 1, 2, 3 and 4 modes produces a complex flow 
with a torque similar to that of our calculation for m = 4. Donnelly (1958) made 
no observations of the azimuthal periodicity. 

It has been suggested in the literature that the realized flow for given T could 
be obtained by maximizing some quantity, e.g. the torque. The present result, 
showing that the more complex wavy-vortex flow has a smaller torque than the 
Taylor-vortex flow, indicates that this idea is not correct for the torque a t  
any rate. 
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several helpful discussions on this work and to thank the Computer Unit a t  the 
City University for their help. Part of the work was done while the author was 
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Appendix 
The matrix method of formulating the double amplitude expansion of Davey 

et al. has been described in Eagles (1971) .  The constants a, and b,  were discussed 
in that paper for the case of an expansion to fifth order in the amplitudes. Here 
we are interested only in a third-order expansion, but we need to find the extra 
constants b,  and a,. 

We use the notation of Eagles (1971)  except that here 

ulgz) is the coefficient of AzBmBn eiphc+iqk$ (A 1)  

in the expansion of the velocity vector. The co-ordinate 5 is the non-dimensional 
form of z, and q5 is a multiple of 8. We find that the linear eigenfunction for the 
axisymmetric case satisfies the equation 

(d /dx  - O )  - u,B) u\%$) = 0,  (A 2) 

(d /dx  - A(,*') - b, B) u&$ = 0. (A 3) 

and the linear eigenfunction for the non-axisymmetric case satisfies the equation 

Here A(P,n) is defined in Eagles (1971) ,  and is a 6 x 6 matrix function of x (the 
dimensionless form of r )  and of the dimensionless parameters T, 7, p, h and m. 
The matrix B is constant. The boundary conditions for (A 2) and (A 3) and for 
the subsequent equations are that the last three components of the six-vector 
be zero at  the cylindrical boundaries (x = 2 4). 

Proceeding, we find eventually that 

{d/dx - A(,,@- 3 ~ ,  B) u&) = N8 +a, BU!;:), 

{d/dx - - ( 2a0 + b,) B} u;$:) = N1, + b,  Bub?.,O), 

{d/dx - A(,,,) - (a, + bo + 6,) B} u!?:) = M , + a4 Bu$&O), 

{d/dx - A(l.1' - ( 2b, + 6,) B} ~&l) = M 2 + b 1 B uoio (l l). 

(A 4) 

(A 5) 

(A 6) 

(A 7)  

The vectors N, and N,, have components which are quadratic functions of 
components of earlier terms in the series, and explicit forms are given in Eagles 
(1971). The vectors M, and M, are easily calculated in a similar way. 

We fix the parameters 7, p, h and m. Then a, and b, are determined as functions 
of T through (A 2 )  and (A 3). We now note that when a, = 0 the operators on the 
left-hand sides of (A 2 )  and (A 4) are identical. Hence, when a, = 0 (A 4) has 
a solution satisfying the appropriate boundary conditions if and only if the 
constant al is chosen to make the right-hand side orthogonal to the adjoint 
eigenfunction fo of (A 2 ) .  Hence a t  a, = 0 
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Let go be the adjoint eigenfunction to (A 3). Then at  a, = 0 we must have 

6, = [ -/* -4 g,.N,d:c//' -3 go. Bu&?dx] ao=O . (A 9) 

Now consider (A 6) when b,, = 0. Since (A 2) has a solution at  the corresponding 
value of a, then at  b,, = 0 (point B in figure 1) we must have 

Similarly from (A 7), at b,, = 0 we must have 

Davey et al. have argued that if we wish to approximate the flow to second 
order in the amplitudes there is no better choice of the constants than those given 
above. In  calculating the flow field and the torque we therefore calculate a,, 
b,, b, and a4 as above, and calculate the ut$ for i +j  + k 6 2 a t  a, = 0 (T = T,). 
For the Taylor-vortex and wavy-vortex flows the variation with T is therefore 
expressed solely through the variation of a, and b, with T. 
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